Dataconda

User guide

Author:
Michele SAMORANI

January 9, 2015

Contents

1 Introduction to Dataconda 1
2 Basic Concepts 3
2.1 Tables 3
2.2 Attributes 4
2.3 Associations e 4

3 An Extensive Tutorial 7
3.1 Imstallation 7

3.2 Tables and Table settings 7
3.3 Associations 10
3.4 Attribute Generation 10
3.5 Analyzing the Output 11
3.5.1 Attribute Syntax Lo 12

3.6 Extending Dataconda 14
3.6.1 Write New Analysis Tools 14

3.6.2 Write New Aggregating Functions 15

CONTENTS

Introduction to Dataconda

One of the most time-consuming, value-adding, and yet undervalued tasks
in data mining is data preparation. Algorithms from statistics and machine
learning typically assume that the input is given: that is, someone prepared
a table with one row per observation and one column per predictor. One
more column is the dependent variable, which we wish to explain in terms
of the predictors. Perhaps there are still some minor adjustments to make,
such as standardize, discretize, or combine variables. Despite the need for
these minor touches, all the information is assumed to be already contained
in the table.

How is the table built in the first place?

Typically, the analyst collects predictors that she thinks are important to
predict the dependent variables. For example, if we want to predict
whether someone is at risk of a heart attack, we will probably include a
binary variable that indicates if the person is a smoker, or whether the
person had a heart attack in the past year. Which predictors to construct
is often decided through discussions with domain experts. There are two
problems with this approach:

1. It is time consuming. Building predictors often involves joining dif-
ferent tables, aggregating, and filtering information. These operations
typically require writing and maintaining lots of SQL code.

2. It does not find new knowledge. This claim may sound surpris-
ing to data mining enthusiasts, who see classification and regression
algorithms as generators of knowledge. Unfortunately, they are not.
Regression or classification rules do not represent new knowledge, be-
cause they involve the information that was chosen as most likely to
be correlated to the dependent variable. For this reason, this approach
makes it very unlikely to find an unexpected pattern.

2 1. INTRODUCTION TO DATACONDA

What should the data mining process be like then?

Given that the current data mining process is inefficient and incapable of
finding new knowledge, we need to propose a new data mining process.
Ideally, the user’s only task should be to gather and describe the data
available, and not to decide which predictors to build from it. The
available data typically involves different entities, which are in certain
relationships with one another. For example, “Person” is an entity which
lives in another entity called “County”. The relationship between them is
that each county has many people living in it, while each person lives in
only one county. Entities and relationships can obviously be modeled
through a relational database. After organizing entities in the tables of a
relational database, the user will ideally only have to specify what is the
dependent variable, and the best predictors will be automatically found by
the data mining algorithms.

What does Dataconda do?

Dataconda embeds the ideal data mining process: the user only has to (1)
organize the available data in a relational database and (2) indicate a
dependent variable, and Dataconda will automatically compute a large
number of predictors without the need to formulate hypotheses. These
predictors are built by selecting, aggregating, and filtering the information
available in the database. From a practical point of view, Dataconda
automatically generates the hypotheses to explain the dependent variables.

2

Basic Concepts

Let us introduce three important concepts in Dataconda: the concepts of
Table, Attribute, and Association. If you are familiar with database jargon,
you can skip this section.

2.1 Tables

A Table is a set of records organized in rows and columns. Tables 2.1 ,
2.1, and 2.1 report a set of purchases, the set of clients who made those
purchases, and the set of products sold in those purchases. Each purchase
is made by one client and involves one product. A client is characterized
by Gender and Age; a product is characterized by a price; a purchase is
characterized by a Date of purchase, by whether the purchase was made
Online (0/1), and by whether the purchase was eventually Returned (0/1)
to the store.

Table 2.1: The Purchases table
PurchaseID Date Online ClientID ProductID Return

Purl Oct 10 1 Clil Prol 1

Pur2 Oct 11 0 Cli2 Pro2 0
Pur3 Oct 14 0 Clil Pro2 0
Pur4d Oct 31 0 Cli3 Pro3 1

Table 2.2: The Clients table Table 2.3: The Products table

ClientID Gender Age ProductID Price
Clil M 33 Prol $200
Cli2 F 45 Pro2 $100
Cli3 M 28 Pro3 $160

4 2. BASIC CONCEPTS

2.2 Attributes

The columns of a table are called attributes. Generally, attributes repre-
sent characteristics of the entities. For example, a purchase (Table 2.1)
is characterized by the attributes Date, Online, and Return, which respec-
tively denote the transaction date, whether the purchase was made online,
and whether it was later returned. When convenient, we will refer to the
attribute a of table T with the notation T.a (e.g., Purchases.online). Each
attribute is of one of the following types:

e ID or key: An ID attribute has the goal of identifying and referring
to records in a table. There are two types of IDs: primary keys and
foregin keys. Primary keys are unique identifiers within a table. For
example, the primary key of the Clients table is ClientID (note that
primary keys are generally underlined in the headers of the table).
This means that each client has a different ClientID. Foreign keys are
“pointers” to primary keys. For example, to indicate which client made
a purchase, we use Purchases. ClientID, which is a foreign key pointing
to Clients. ClientID. note that the value of a foreign key is taken from
the possible values of the referenced primary key. This implies that
the value of Purchases.ClientID must be present among the values of
Clients. ClientID.

e Date: A date attribute is the timestamp that characterize the entities
of the table. For example, Purchases.Date is the timestamp at which
the transaction occurred.

e Numeric: A numeric attribute takes only numeric (real) values. For
example, Products.Price and Clients. Age are numeric.

o Categorical: A categorical attribute takes only a finite set of values.
For example, Clients. Gender and Purchases. Returned are categorical.
In Dataconda, categorical attributes are stored as text, even if they
are number, as in the case of Purchases. Returned, which can be 0 or 1.
Categorical attributes are also known as factor or nominal attributes.

Attributes are also characterized by a dimension, which represents the
unit of measurement of that attribute. Dataconda allows attributes of the
same dimension to be compared to each other.

2.3 Associations

An association A — B is a relationship between two tables A and B. Dat-
aconda considers only two types of associations: 1-to-1 and 0-to-N. A — B
is a 1-to-1 association if every record of A is associated to exactly one record

2.3. ASSOCIATIONS 5

of B. This is the case, for example, of the association Purchases — Clients
because any given purchase is made by exactly one client. On the other
hand, A — B is a 0-to-N association if every record of A is associated to
any number of records in B. This is the case, for example, of the association
Clients — Purchases because any given client may have made any number
of purchases.

Typically, if there is a foreign key from table B pointing to a primary key
in table A, as it is the case for B=Purchases and A=Clients, then A — B
is 1-to-1 and B — A is 0-to-N. In Dataconda, whenever the user declares
a 0-to-N associations A — B, the software will automatically add a 1-to-1
association B — A.

2. BASIC CONCEPTS

3

An Extensive Tutorial

In this chapter, we will install Dataconda and work on a problem whose goal
is to classify purchases that are kept by the customer and purchases that
are instead returned to the store.

3.1 Installation

Download and install the following files:

1. The installer Dataconda 1.0.msi from http://www.dataconda.net/download.html.
If you have a Dataconda license number, insert it after launching Dat-
aconda; if you do not have a license, you will be using Dataconda in
“trial mode”.

2. The statistical package R, available at http://cran.r-project.org/bin/windows/base/.
This will allow you to run statistical analyses on the generated at-
tributes.

3. (optional but recommended) The data mining software Weka, available
for download at http://www.cs.waikato.ac.nz/ml/weka/downloading.html.

After installing these programs, Dataconda is ready for use. Now, download
the “tutorial.zip” file from http://www.dataconda.net/tutorial.html
and extract it into a “Tutorial” folder on your machine. This zip file con-
tains the tables of the tutorial database (Purchases.csv, Clients.csv, and
Products.csv) (as in Table 2.1) and a R file RTemplate.R that will analyze
the generated attributes.

3.2 Tables and Table settings

Open Dataconda.

_ Jhall LY.
¢ Creating :
¢ Loadme a

Figure 3.1: Snapshot of Dataconda

The first step is to load the individual tables (Purchases, Products, and
Clients) in memory. Click on “New Table” and select the file Purchases.csv.
Then, do the same for Products.csv and Clients.csv. Note that the software
will generate an error if the file is being used by another process (e.g., by
Excel). Also, note that the software expects the first line of the file to be
the headers.

The settings that appear in the lower part of the window allow the user
to change the metadata relative to each table. First, the user can define
the type and dimension of each attribute. By clicking on the button “Set
refinements”, the user can decide which refinements will be enabled for each
attribute. For example, select the table Clients from the table list and click
the “Set refinements” button relative to its attribute Age. There are two
types of refinements: “Comparison” refinements and “ToValue” refinements.
Let us explain what they are through examples. For more details and ex-
amples, the user is referred to [2].

By enabling Comparison refinements and selecting the operator “<” or
the operator “>”, the software will generate attributes that compare the
age of other customers to the age of the current customer. For example, the
software will generate this attribute: the average price of products purchased
by customers older than the current customer. Comparison refinements will
compare attributes of the same dimension. By contrast, by enabling To-

3.2. TABLES AND TABLE SETTINGS 9

Value refinements, the software will compare the customers’ age to fixed
values. For example, the software will generate this attribute: the number
of purchases of those customers younger than 23 who bought the current
product. Obviously, for numeric attributes it is often undesirable to con-
sider all possible values; rather, it is advisable to split the range into bins.
In Dataconda, bins are built so that their intervals are of the same width,
regardless to how many points fall into each bin.

The next column of the Table settings is called “Carries Information”.
By indicating that an attribute a carries information, the user enables the
generation of attributes and refinements based on a. For example, by se-
lecting that the attribute Purchases.Client_ID, the software will generate
an attribute Client ID and an attribute Number of times that Client_ID
5267 purchased the same product as the current client. This may have im-
portant consequences when solving the classification problem because such
an attribute will generate classification rules based on the client identifiers,
such as “If Client_id = 190290, then Return = 1 with a 30% probability”.
In Dataconda, IDs by default do not carry information.

If an attribute carries information, then the user may select what aggre-
gating functions (displayed in columns) should be applied to it. Aggregating
functions receive a list of values as input and return a single value as output.
Obviously, the type of attribute determines which aggregating functions can
be selected. For example, the function maz is not compatible with categori-
cal attributes. Table 3.1 reports the default functions, their description, and
the list of compatible attribute types.

Table 3.1: Aggregating functions

Function Description Compatible with
Max Computes the maximum Numeric, Date
Min Computes the minimum Numeric, Date
Avg Computes the average Numeric
Sum Computes the sum Numeric

Numeric, 1D,

CountDistinct Count the number of distinct values .
Categorical, Date

Numeric, ID,

Count Count the number of values Categorical, Date
Numeric, ID,
MostFrequent Returns the most frequent value .
Categorical, Date
Most Recent Returns the most recent value Numeric, ID,

(if they are sorted by increasing date) Categorical, Date

Returns the slope of the values

i N ic, Dat
(x is assumed to be 1,2,...,n) umeric, Date

Slope

10 3. AN EXTENSIVE TUTORIAL

By selecting a pair (function, attribute), the user enables the appli-
cation of a function on an attribute. For example, by selecting the pair
(Maz,Return), the software will generate attributes such as: The mazimum
value of Return among the past purchases of the client. Since Return is
binary, this attribute can be interpret as a binary indicator of whether the
client has ever returned a purchase.

At this point, the user defined the type of attributes, their dimension,
and which refinements and aggregating functions can be applied on each of
them. The next step is to define the associations among the tables.

3.3 Associations

We now need to declare the associations among tables. In our example,

Clients is in a 0-to-N association with Purchases and Products is in a 0-

to-N association with Purchases. To declare these associations, click on

“New Association” and then set Tablel to Clients and Table2 to Purchases.

Then, select the IDs that join the two tables: Clients.Client ID and Pur-
chases.Client__ID. Finally, click “Create”. Then, declare the association
Products— Purchases through the IDs Products. Product__ID and Purchases. Product__ID.
The metadata has now been completely entered. We can finally proceed to

the generation of the attributes.

3.4 Attribute Generation

Click on the central button “Click here to generate attributes” to open the
Generate Attributes form. This form contains the main options to perform
the attribute generation.

First, we need to select the target table Purchases (top-left) and the class
attribute Return. This information will result in the generation of a new
table with one row per purchase and a large number of columns, which will
hopefully explain the class Return. You might notice that upon selecting
the class attribute, the same attribute is automatically included in the list
of “Class spoilers”. Class spoilers are attributes whose most recent value
cannot be used to predict the class attribute. The concept of class spoiler is
based on the concept of “data leak” [1]. Obviously, we cannot use the current
value of Return to predict the current purchase, because we would use future
information; however, we can use aggregations of past values of Return, such
as the client’s past number of returns. Although in this example Return is
the only class spoiler, it is possible to include more. For example, if the table
Purchases had a categorical attribute Reason for return € {“Product was
defective”, “Client is unsatisfied”, “Product was not returned” } indicating
the reason for return the product, this attribute would also be a class spoiler,

3.5. ANALYZING THE OUTPUT 11

because the reason for return would immediately reveal whether the current
purchase is going to be returned.

The form also allows the user to choose between generating all the at-
tributes (using the aggregation and refinement operators previously defined)
and generating only a subset of attributes. By choosing the second option,
the user can write the names of the attributes to generate (one per line).
Right now, we’ll leave the default option selected (“Generate all attributes”).

The rest of the settings are:

o Time Limit Scan: the time spent generating attributes in the default
order, that is, form the simplest to the most complex, and using a
“breadth-first” way of generating the paths along which to generate
the attributes.

e Time Limit Random Pick: the time spent generating attributes in
random order. If the algorithm runs out of time before generating all
attributes in the deafult order, it starts generating the remaining ones
in random order (that is, not necessarily from the least complex). This
strategy has been shown successul in [2].

e Qutput Directory: the folder in which to generate the output. By
default, it is the same folder as the .csv files.

e Max Depth: the maximum “depth” of the attributes to generate. An
attribute at depth d is built along a path formed of d tables (tables may
appear more than once). For example, the client’s past return rate is
at depth 3 because it is built along the path Purcahses — Clients —
Purchases: its generation involves (1) joining the table Clients with
the table Purchases in order to attach to the table Clients the virtual
attribute “Client’s past return rate”, and (2) joining the table Clients
with the table Purchases to attach this attribute to the target table.

Let us leave all the options unchanged and press “Run”. Within a few
seconds, Dataconda generates 144 attributes. If you have R on your machine,
then the list of selected attributes will appear. Note that you can generate
a different set of attributes by modifying the selection of aggregation or
refinement operators. Finally, note that in the trial version the attribute
generation procedure is stopped after 50 attributes.

The attribute generation procedure creates several new files in the output
folder. These files are generated not only at the end, but also every x minutes
during the attribute generation procedure, where x can be set by the user
from the Dataconda settings (default is x = 1 minute).

3.5 Analyzing the Output

Let us analyze the files created in the output folder.

12

3. AN EXTENSIVE TUTORIAL

Data.csv: the new target table, after adding all generated attributes.
In our example, the table in data.csv has 145 columns (144 generated
attributes and the class attribute Return). Obviously, the table still
contains one row per purchase, and thus has the same number of rows
(487) as the table in Purchases.csv. The names of the attributes are
randomly generated; their meaning is reported in the file attributes.csv.

Data.arff: the new target table in a format compatible with Weka
[3]. Unlike data.csv, this file contains information on the type of the
generated attributes (categorical, numeric, date). So, if you are using
Weka, you should use this file rather than data.csv.

attributes.tzt: this file reports the list of attributes with a query-like
description of their meaning. The syntax used to describe the gener-
ated attributes is discussed in section 3.5.1.

RScript.R: the R file, generated from RTemplate.R, used to analyze
the file data.csv. More details are reported in section 3.6

AnalysisOutput.tzt: the output file generated by Rscript.R.

In creating these files, Dataconda performs the following actions:

. Generate data.csv and data.arff;
. Generate RScript.R;

. If R is installed, execute the file RScript.R, which will write the output

of the analysis into AnalysisOutput.txt.

. Extract the list of the selected attributes from AnalysisQutput.tzt and

display them on the console, together with their description.

3.5.1 Attribute Syntax

The file attributes.tzt reports the description of the generated attributes.
Let us consider a few examples.

Example 1: Client’s gender

A3287710348852517861_3_3:
Categorical,Gender
DESCRIPTION: Gender of Clients
0:Target->Gender
1:Purchases->Gender
2:Clients.Gender

3.5. ANALYZING THE OUTPUT 13

The first line (A8287710348852517861_3 3) is the name of the at-
tribute as it appears in the files data.csv and data.arff. The second line
reports its type (Categorical) and dimension (Gender). The third line is an
English-like description (“Gender of Clients”). In most cases, this descrip-
tion is easily understandable. However, for complex attributes, it may be
easier to understand the lines that follow. To this end, we need to recall that
each attribute is generated in two steps, as explained in greater details in
[2]: (1) a path starting from the target table is created and (2) information
is iteratively summarized from the end of the path to the beginning of the
path.

So, this attribute is built along the path 0:Target — 1:Purchases —
2:Clients, where Target is a fictitious target table internally used by Data-
conda, which can be safely ignored. So, the attribute is actually generated
along the path 1:Purchases — 2:Clients. The algorithm considers the table
2:Clients and summarizes its content into the previous table by adding to
1:Purchases a virtual attribute “Gender”, which represents the gender of
the client. In summary, this attribute is the gender of the client who makes
the purchase.

Example 2: Indicator of client’s return

Am7101183015660599292_4pl_4:

Numeric,Return

DESCRIPTION: Max(Return) among past Purchases of Clients
0:Target->Max(Return)

1:Purchases->Max(Return)

2:Clients=>Max(Return) where Date LessThan 1l:Date
3:Purchases.Return

This attribute represents the maximum value of the attribute Return
among the past purchases of the current client. It is built along the path
1:Purchases — 2:Clients — 3:Purchases. Let us consider the last associ-
ation 2:Clients — 3:Purchases. Since this association is 0-to-N, the algo-
rithm needs to aggregate information from 3:Purchases to 2:Clients. In this
case, the algorithm added to the table 2:Clients a virtual attribute with the
maximum value of the attribute Return computed among the client’s past
purchases. We know that the computation involves only the past purchases
because of the refinement where Date LessThan 1:Date, which specifies
that the date in the rows 3:Purchases must be less than the date of the cur-
rent purchase in 1:Purchases. At the next step, the algorithm considers the
path 1:Purchases — 2:Clients and attaches the new attribute of 2:Clients
to the table 1:Purchases.

At the end, we have added to the target table 1:Purchases an attribute
whose value is 1 if the client has has at least one return prior to the current
purchase.

14 3. AN EXTENSIVE TUTORIAL

Example 3: Average price among the client’s non-returned past
purchases

A6618156281959293617_5p2_5:
Numeric,Price
DESCRIPTION: Avg(Price of Products) where Return LessThan 0.5,
among past Purchases of Clients
0:Target->Avg(Price)
1:Purchases->Avg(Price)
2:Clients=>Avg(Price) where Date LessThan 1l:Date
where Return LessThan 0.5
3:Purchases->Price
4:Products.Price

From the description, this attribute is the average price of products pur-
chased in the past by the current client, limitedly to the non-returned ones.
This attribute is generated by allowing a maximum depth of 4 on Dataconda
because it is built along the path 1:Purchases — 2:Clients — 3:Purchases —
4:Products. Let us consider the last association 3:Purchases — 4:Products.
Since this association is 1-to-1, the algorithm simply attaches the product
price to each purchase. Then, let us consider the association 2:Clients —
3:Purchases. Dataconda needs to aggregate information from 3:Purchases
to 2:Clients. In this case, the algorithm added to the table 2:Clients a vir-
tual attribute with the average value of the attribute Price computed among
the client’s past purchases that were not returned. We know that the com-
putation involves only this limited set of purchases because of the refine-
ment where Date LessThan 1l:Date and of the refinementwhere Return
LessThan 0.5. At the next step, the algorithm considers the path 1:Pur-
chases — 2:Clients and attaches the new attribute of 2:Clients to the table
1:Purchases.

At the end, we have added to the target table I1:Purchases an attribute
whose value is the average price among the client’s non-returned past pur-
chases.

3.6 Extending Dataconda

Dataconda can be extended in two ways: by writing new analysis tools or
by writing new aggregating functions.

3.6.1 Write New Analysis Tools

As shown in section 3.5, Dataconda generates two files data.csv and data.arff,
which contain the target table obtained after adding the relational attributes

3.6. EXTENDING DATACONDA 15

in csv and Weka format. The analysis of this file can be obviously performed
outside Dataconda (e.g., in R or weka). However, to simplify the iterative
process of defining the correct relational model, Dataconda has the capabil-
ities of automatically running the analysis immediately after the attribute
generation procedure.

To this end, the user needs to place a file RTemplate.R in the output
folder. Dataconda will copy this file into another file Rscript. R and execute
this second file every time the attribute generation procedure ends. The file
RTemplate. R should analyze data.csv and write the results of its analysis on
a file AnalysisOutput.tzt located in the same folder. If the output contains a
list of selected attributes, Dataconda will display it on its console. The list
of selected attributes should be denoted by the header $attributeNames or
Selected attributes. If AnalysisOutput.txt contains either of these headers,
Dataconda will retrieve all the attribute names that follow and will report
them on the console together with their description.

When writing the RTemplate. R, the user may use the following “pseudo-
R” code to read from data.csv:

data={read.csv("$$csvFileName$$", colClasses=c($$colClasses$$)};

Dataconda will substitute $$csvFileName$$ with the complete path of data.csv
(e.g., C:/Dataconda/Tutorial/data.csv) and $$colClasses$$ with the correct

list of attribute types (e.g., rep('numeric’,1),rep(’factor’,1),rep(’'numeric’,143))).
In this way, the user does not need to know the specific working folder or

the type of attributes a-priori.

3.6.2 Write New Aggregating Functions

Aggregating functions have a set of values as input and produce one value
as output. They are used by Dataconda to generate attributes along a 0-
to-N association. For example, attributes generated along the association
Clients — Purchases include the client’s return rate, which is computed by
the aggregating function Average, or the client’s number of purchases, which
is computed by the aggregating function Count.

The default aggregating functions are included in the file Dataconda.aggregatingFunctions.dll.
In Dataconda, the user has the option of specifying the folder in which to
find the aggregating functions (Options — Settings. Upon initialization,
Dataconda will scan the .dll files in that folder and load all the aggregat-
ing functions, which can be recognized by the fact that they implement the
interface dataconda.core.lAggregatingFunction.

The user can also define her own aggregating functions by creating a
class that implements the methods of dataconda.core.IAggregatingFunction.
The logic of these methods is intuitive and can be easily explained through
an example. Suppose that the user wants to implement the aggregating

16 3. AN EXTENSIVE TUTORIAL

function StdDev, which computes the standard deviation of a set of values.
The C# code of the StdDev function is as follows.

using System;

using System.Collections.Generic;

using System.Ling;

using System.Text;

using System.Threading.Tasks;

using Dataconda.core; // need to reference
dataconda.core.dll and import this namespace

namespace AggregationExample

{

/// <summary>

/// Computes the standard deviation of a set of numbers

/// </summary>

public class StandardDeviation : IAggregatingFunction //
need to implement this interface

{
List<double> _values; // will collect the values on

which to compute the standard deviation

/// <summary>

/// The name of the function.

/// </summary>

public string Name

{
// the name of the function is StdDev
get { return "StdDev"; }

}

/// <summary>

/// The description of the function: it will appear if
the mouse passes over the corresponding column.

/// </summary>

public string Description

{
get { return "Computes the standard deviation"; }

}

/// <summary>

/// The list of attribute types that this function can
be applied to.

/// </summary>

3.6. EXTENDING DATACONDA 17

public ICollection<AttributeType>
SupportedAttributeTypes

{
// StdDev can be computed only among numeric
attributes
get { return new List<AttributeType> {
AttributeType.Numeric }; }
}

/// <summary>

/// A subset of the SupportedAttributeTypes. They will
be checked by default.

/// </summary>

public ICollection<AttributeType> DefaultAttributeTypes

{
// standard deviation will not be selected by
default
get { return new List<AttributeType>() { }; }
}

/// <summary>

/// The dimension of the value returned, given the
dimension of the values in input.

/// </summary>

/// <param name="value"></param>

/// <returns></returns>

public string GetDimension(string value)

{

// if we compute the StdDev of an attribute of
dimension d, the result is of dimension d as
well

return value;

}

/// <summary>
/// The type of the output attribute, given the type
of the input attribute.
/// </summary>
/// <param name="value'"></param>
/// <returns></returns>
public AttributeType GetResultType(AttributeType value)
{
// the result of StdDev is always a numeric
return AttributeType.Numeric;

18

3. AN EXTENSIVE TUTORIAL

}

/// <summary>

/// This method is called before starting to scan the
values among which to compute the aggregation.

/// </summary>

public void Initialize()

{
// we will hold all the values in a List<double>
_values = new List<double>();

}

/// <summary>
/// This method is called every time a value 1is
scanned.
/// </summary>
/// <param name="value'"></param>
public void TreatDataRow(IComparable value)
{
if (value == null)
return;
// value can be of three types: string, double,
and date. Because we declared that
// StdDev only takes numeric attributes as input,
value will always be double.

double dv = (double)value;
if (Double.IsNaN(dv))
return; // if it is null, skip it from the
computation

_values.Add(dv); // add it to the list of values
}

/// <summary>
/// This method is called at the end to compute the
result.
/// </summary>
/// <returns></returns>
public IComparable GetValueFor()
{
// compute the average
double average = 0;
foreach (double d in _values)

3.6. EXTENDING DATACONDA

average += d;
average /= (_values.Count + 0.0);

// compute the sum of the squared difference
double sumSq = 0;
foreach (double d in _values)

sumSq += Math.Pow(d - average, 2);

// return the standard deviation
return Math.Sqrt(sumSq / (_values.Count + 0.0));

19

20

3. AN EXTENSIVE TUTORIAL

Bibliography

[1] S. Rosset, C. Perlich, G. Swirszcz, P. Melville, and Y. Liu. Medical
data mining: insights from winning two competitions. Data Mining and
Knowledge Discovery, 20(3):439-468, 2010.

[2] M. Samorani, M. Laguna, R. K. DeLisle, and D. C. Weaver. A random-
ized exhaustive propositionalization approach for molecule classification.
INFORMS Journal on Computing, 23(3):331-345, 2011.

[3] I. H. Witten and E. Frank. Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, 2005.

21

